Voice-Over-IP

Daniel Zappala

CS 460 Computer Networking
Brigham Young University
Coping with Best-Effort Service

- sample application
 - send a 160 byte UDP packet every 20ms
 - packet carries a voice sample plus a header

- packet loss
 - can send with TCP, but ...
 - extra delay due to retransmission and reordering may be unacceptable for a conversation
 - rate may become too slow

- can use FEC
 - send redundant information in each packet
 - but if loss exceeds 10 to 20 percent, nothing you can do
Coping with Best-Effort Service

- **packet delay**
 - need delays less than 400ms
 - consider any packets delayed excessively to be lost
 - nothing else an application can do

- **packet jitter**
 - variation in interpacket delays
 - can be larger or smaller than the original delay between packets
 - use buffering and then play out smoothly
Removing Jitter
Removing Jitter

- include a timestamp on each packet of voice data
- use buffering and delay playout
 - play packets from the buffer at a certain rate
 - want to prevent draining the buffer too early
 - want to prevent delaying the packets too much: 400 ms maximum, but less is better
Fixed Playout Delay

- play packet i at $t_i + q_i$
 - t_i: time the packet was generated
 - small q: better real-time interaction
 - large q: fewer missed playouts
Adaptive Playout Delay

- goal: minimize playout delay, infrequent missed playouts
- for start of talk spurt, play packet i at $p_i = t_i + d_i + Kv_i$
 - $d_i =$ estimate of delay (EWMA)
 - $v_i =$ estimate of delay variation (EWMA)
 - $K =$ constant, e.g. $K = 4$
- for other packets, $p_j = t_j + p_i - t_i$
 - use the same offset from t as beginning of talk spurt
 - application may denote start of talk spurt
- because playout delay is adaptive, silent periods may be compressed or elongated
Recovering from Packet Loss
Forward Error Correction (FEC)

- **FEC with Redundant Data**
 - for every group of n packets, create a redundant packet: exclusive-OR of the n original packets
 - send $n + 1$ packets, increasing bandwidth by $1/n$

- receiver can reconstruct the stream with any n packets
 - must wait for n packets before playout

- trade-offs
 - larger n: less bandwidth
 - smaller n: shorter playout delay, smaller chance of two packets out of n being lost

- simple version of FEC: see RFC 2733
Forward Error Correction (FEC)

- **FEC With Lower Quality Data**
 - add lower-resolution audio to each packet
 - substitute lower quality when needed: Free Phone, RAT

- many other more complex kinds of FEC available
Interleaving

- interleave smaller (5 ms) pieces among packets
- if a packet is lost, still have most of the stream
- no redundancy overhead, but added playout delay
Error Concealment

• alternatives
 • replay the last packet
 • interpolation

• usually good enough to fool the human ear for small loss rates and small amounts of lost data
VoIP with Skype
Skype

- voice and video
- codecs at various rates
 - 3 kbps to 1 Mbps video
 - voice sampled at 16,000 samples/s instead of 8,000
- transport
 - sent via UDP unless blocked by firewall
 - control packets over TCP
- FEC for loss recovery
- adapts encoding and FEC based on network conditions
Skype P2P

- superpeers and ordinary peers
 - super peers keep an index mapping Skype username to IP address and ports
 - likely using a DHT
- both caller and callee may have NAT
 - superpeer arranges for a non-NATed super-peer to act as relay
 - caller sends data to callee through relay, and vice versa
- multiparty communication
 - everyone sends audio packets to person who started the call
 - this person combines all audio into a single stream, sends combined stream to everyone else
 - for video, everyone sends packets to a relay, which sends out unaltered streams to everyone else – need higher uploading bandwidth
Real-Time Streaming Protocols
RTP: Real-Time Protocol

- specifies packet structure for audio and video streams
 - payload identification
 - sequence number
 - timestamp
- used for interoperability between multimedia applications
- runs on top of UDP
- RFC 1889
RTP Header

<table>
<thead>
<tr>
<th>Payload type</th>
<th>Sequence number</th>
<th>Timestamp</th>
<th>Synchronization source identifier</th>
<th>Miscellaneous fields</th>
</tr>
</thead>
</table>

- **payload type (7 bits):** type of encoding, e.g. PCM, GSM, JPEG, MPEG audio, MPEG video
- **sequence number (16 bits):** detect packet loss and order packets
- **timestamp (32 bits):** sampling time of first byte
- **SSRC (32 bits):** source of RTP stream - allows multiple sources per session
SIP: Session Initiation Protocol

• vision
 • all telephone and video conference calls take place over the Internet
 • people are identified by names and email addresses rather than by phone numbers
 • you can reach the person you are calling wherever she is on the Internet

• call setup
 • start and end call
 • agree on media type and encoding

• map name and email to IP address

• call management
 • add new streams during call
 • change encoding during call
 • invite other users to call
 • transfer and hold calls
SIP Call Setup

- example assumes Alice knows Bob’s IP address
- Alice provides port number, IP address, preferred encoding
- Bob responds with new port number, IP address, preferred encoding
- SIP messages can use TCP or UDP, default port 5060
SIP Extras

- encoding negotiation
 - may not have requested encoder
 - may prefer a different one
 - respond with **606 Not Acceptable** and list encoders
 - sender can send a new invitation with new encoder

- can reject a call
 - *busy*, *gone*, it payment required, *forbidden*

- media can use RTP or any other protocol

- syntax is similar to HTTP
Name Translation and User Location

• need to map user name or email address to IP address
 • mobility
 • changing IP addresses due to DHCP
 • many different IP devices per user
 • call forwarding

• **SIP registrar**: clients register to provide current location and IP address (similar to instant messaging)

• **SIP proxy**: find callee on behalf of caller (similar to DNS server)
Session Initiation Example

1. SIP client 217.123.56.89
2. SIP registrar upenn.edu
3. SIP proxy umass.edu
4. SIP registrar eucom.fr
5. SIP client 197.87.54.21
6.
7.
8.