The Network Layer and Routers

Daniel Zappala

CS 460 Computer Networking Brigham Young University

Network Layer

- deliver packets from sending host to receiving host
- must be on every host, router in the Internet –
 IP defines what it means to be a part of the Internet
- switch: processes only the link layer header
- router: processes the network layer header

Packet Forwarding versus Routing

forwarding

- accept packet on incoming interface
- lookup outgoing interface from forwarding table
- put packet into queue for outgoing interface

routing

- determine the path that packets should take
- use these paths to create the forwarding table in a given router

How Should the Network Forward Packets?

Virtual Circuit

- setup a fixed path through the network like a telephone circuit
 - assign a flow to a path
 - packets carry virtual circuit identifiers to identify the path, rather than being forwarded based on the destination IP address
- advantages
 - can maintain multiple paths to a destination, each used by different flows
 - can set aside resources for each path, e.g. bandwidth
 - can isolate traffic, e.g. carry voice traffic separate from data traffic

Virtual Circuit Example

VC table for R1:

Incoming IF	Incoming VC	Outgoing IF	Outgoing VC
1	12	2	22
2	63	1	18
3	7	2	17
1	97	3	87

Virtual Circuit Setup

Network Layer Forwarding Packets Routers

Datagrams

- packets forwarded using only destination address in packet
 - each router sends packet to best next hop toward destination
 - packets sent from same source to same destination may take different paths
- advantages
 - simple
 - no connection setup in network layer
 - · no connection state in routers
 - complexity (reliability and transport) at the edges
 - flexible: if a route fails, datagrams can take another path
- disadvantages
 - can only use one route per destination
 - forwarding table can be large
 - no performance guarantees

How Do Routers Work?

Routers

- key functions
 - run routing protocol (RIP, OSPF, BGP)
 - forward datagrams from incoming to outgoing link
 - schedule packets in outgoing link queues

Input Port Processing

- line termination physical layer bits
- data link processing link layer frames (e.g. Ethernet)
- lookup, forwarding, queueing network layer
 - given a datagram destination address, lookup output port using forwarding table stored in input port memory
 - try to complete input port processing at link speed
 - if datagrams arrive faster than processing rate, they may be queued on input port

Switching Fabrics: Memory

- first-generation routers
- switching controlled by a CPU packet copied to system memory and then out to output port
- memory contention: switching speed limited by memory bandwidth

Switching Fabrics: Bus

- copy datagram from input port memory to output port memory via shared bus
- bus contention: switching speed limited by bus bandwidth
- Cisco Catalyst 1900: 1 Gbps bus (old product)
 - sufficient speed for access and enterprise routers (not regional or backbone)
 - 3MB memory shared by all ports
 - 14,880 pps to 10-Mbps ports, 148,800 pps to 100-Mbps ports (64-byte packets)

Switching Fabrics: Interconnection Network

- overcome bus bandwidth limitation
- crossbar, Banyan networks, and others
- advanced design: fragment datagram into fixed length cells, switch cells through the fabric (cell switching)
- Cisco 12000 (December 2003)
 - 2.5 40 Gbps/slot
 - memory-less crossbar switching matrix
 - distributed processing

Output Port Processing

- buffering required: datagrams may arrive faster than link transmission speed – delay and loss possible
- scheduling discipline chooses order in which datagrams are transmitted
 - FIFO: service packets in order they arrive
 - priority queueing: service packets according to priority field in IP header
 - fair queueing: give every TCP flow a fair share of link bandwidth

Network Layer Forwarding Packets Routers

Active Queue Management

- drop or mark a packet before the queue is full
 - sends a congestion signal to the sending host
 - causes hosts to slow down before buffer becomes full
 - to mark packets, need support from TCP to carry mark back to the source: TCP ECN
- Random Early Detection (RED)
 - use EWMA to track average queue length
 - if queue $length < min_{th}$, let packet in
 - if queue length > max_{th}, mark or drop
 - if queue length between min_{th} and max_{th} , mark or drop with probability = f(length)
 - this function increases from 0 to 1 as length moves from the minimum to maximum threshold
- AQM keeps the queue size low, which decreases overall queueing delay

Output Port Contention

- in this example, the switch fabric can deliver three packets to an output port in the time it takes for a single packet to be sent at the output port
- results in queueing delay at output port

Head-of-Line Blocking

- in this example, the switch fabric can only deliver one packet a time to an output queue
- even though a second packet in the bottom input queue can be delivered to the middle output queue, it is blocked by a packet ahead of it