Multimedia Applications
Video

- **high bit rate**
 - 100 kbps to 3 Mbps
 - predicted to be 90% of Internet traffic by 2015
- compression
 - 24 to 30 frames per second
 - spatial redundancy
 - temporal redundancy
- often create multiple versions at various bit rates (compression levels)
 - user or software chooses the best version
Audio

- significantly lower bandwidth
 - 14 kbps for speech
 - 128 kbps for music
- analog to digital
 - sample audio at a fixed rate, e.g. 8,000 samples per second
 - round each sample to a finite value, e.g. 8-bit audio yields 256 possible values
 - bit rate = samples per second x bit value (PCM = 8,000 x 256 = 64 kbps)
 - tradeoff between quality and bit rate/storage requirements
- compression: MP3, AAC
Multimedia Applications

- **streaming stored audio and video**
 - content pre-recorded and stored at server
 - user begins playback before entire file received
 - content played continuously, at same rate as original recording
 - user can pause, rewind, fast-forward, index content

- **conversational voice- and video-over-IP**
 - content is sent live, rather than pre-recorded, still continuous
 - delay-sensitive
 - delay $< 150\,\text{ms}$ not perceptible, $150 – 400\,\text{ms}$ acceptable, $> 400\,\text{ms}$ not tolerable
 - loss-tolerant

- **streaming live audio and video**
 - multiple users receiving simultaneously
 - application-layer multicast or multiple unicast streams from a CDN
 - delay of 10s of seconds from live are acceptable
Streaming Stored Video
Streaming Stored Video

- applications make the best out of best-effort service
- client buffering
 - download video into a buffer
 - video arrives at a variable rate (depending on available bandwidth)
 - play from buffer at a constant rate
 - guess a playback delay that prevents buffer from running out
UDP Streaming

- transmit at a fixed rate
 - no congestion control
 - simple to implement with a small client buffer
- drawbacks
 - dropped frames during congestion, with no retransmission
 - not fair to other Internet traffic
 - server must maintain state for each client to keep track of when video is paused or rewound
 - many firewalls block UDP traffic
HTTP Streaming

- overview
 - store video as a file
 - client fetches file as fast as it can with TCP
 - store in a buffer and then play at a continuous rate
- variable TCP rate
 - if less than video bit rate, then alternating between periods of continuous play and pauses for buffering
 - if greater than video bit rate, then continuous play with no interruptions
- early termination wastes bandwidth, so use small buffers
Adaptive HTTP Streaming

- **DASH**: Dynamic Adaptive Streaming over HTTP
- **store video on server**
 - divide into 2 second chunks
 - encode each chunk with multiple bit rates
- **client downloads using HTTP GET requests**
 - fetch a low quality version
 - if received in plenty of time, fetch higher quality next time
 - if not going to be received in time, abort and fetch lower quality
 - constantly adjust rate as congestion allows
- allows client to easily adapt to varying conditions – mobile to high-speed connectivity
- able to avoid freezing if adaptive algorithm is good
- able to use HTTP caches
Content Distribution Networks

- streaming from a massive data center is infeasible
 - clients may be far away, with a transcontinental bottleneck
 - wasted bandwidth as popular videos sent many times to different clients
 - single point of failure

- CDN
 - many servers, spread across geographically diverse areas
 - private (Google) or third-party (Akamai for Netflix and Hulu)
 - deep – locate servers in many ISPs close to users
 - bring home – locate servers near IXPs and POPs near many ISPs, connect them with high-speed private links
CDN Operation

- **DNS**
 - company places content on CDN servers
 - forwards DNS queries, e.g. video.company.com to server1.cdn.com

- **cluster selection**
 - CDN wants to forward client to nearest cluster
 - *geographical*: route to cluster geographically closest to the client IP – may not be lowest delay
 - *real-time measurements*: measure delay and loss between clusters and clients, collect and use for selection
 - *IP anycast*: give all CDN servers the same IP address and use BGP to route to closest one
Case Studies
Netflix

- rents CDN servers from a third party rather than building its own infrastructure
YouTube

- private CDN
- use DNS to redirect client to a cluster
 - usually smallest RTT between client and cluster
 - may be directed to more distant cluster for load balancing
 - may also be redirected if cluster doesn’t have the file
- does not use adaptive streaming
Kankan

- P2P video distribution, in China
- similar to BitTorrent
 - contact tracker
 - download chunks of video from peers in parallel
 - focus on downloading chunks needed soon
- swarms of 10,000+ peers for popular videos
- UDP